翻訳と辞書
Words near each other
・ WRBT
・ WRBU
・ WRBV
・ WRBW
・ WRBX
・ WRBZ
・ WRC
・ WRc
・ WRC 3
・ WRC 4
・ WRC II Extreme
・ Wrapped (magazine)
・ Wrapped Around
・ Wrapped Around Chicago – New Year's Eve at The Riviera
・ Wrapped Around Your Finger
Wrapped Cauchy distribution
・ Wrapped distribution
・ Wrapped exponential distribution
・ Wrapped in a Dream
・ Wrapped in Red
・ Wrapped in Red (song)
・ Wrapped in Ribbon
・ Wrapped Lévy distribution
・ Wrapped normal distribution
・ Wrapped Tight
・ Wrapped Up
・ Wrapped Up Good
・ Wrapped Up in Pinstripes
・ Wrapped Up in You
・ Wrapper


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wrapped Cauchy distribution : ウィキペディア英語版
Wrapped Cauchy distribution

In probability theory and directional statistics, a wrapped Cauchy distribution is a wrapped probability distribution that results from the "wrapping" of the Cauchy distribution around the unit circle. The Cauchy distribution is sometimes known as a Lorentzian distribution, and the wrapped Cauchy distribution may sometimes be referred to as a wrapped Lorentzian distribution.
The wrapped Cauchy distribution is often found in the field of spectroscopy where it is used to analyze diffraction patterns (e.g. see Fabry–Pérot interferometer)
== Description ==

The probability density function of the wrapped Cauchy distribution is:
:
f_(\theta;\mu,\gamma)=\sum_^\infty \frac

where \gamma is the scale factor and \mu is the peak position of the "unwrapped" distribution. Expressing the above pdf in terms of the characteristic function of the Cauchy distribution yields:
:
f_(\theta;\mu,\gamma)=\frac\sum_^\infty e^ =\frac\,\,\frac

In terms of the circular variable z=e^ the circular moments of the wrapped Cauchy distribution are the characteristic function of the Cauchy distribution evaluated at integer arguments:
:\langle z^n\rangle=\int_\Gamma e^\,f_(\theta;\mu,\gamma)\,d\theta = e^.
where \Gamma\, is some interval of length 2\pi. The first moment is then the average value of ''z'', also known as the mean resultant, or mean resultant vector:
:
\langle z \rangle=e^

The mean angle is
:
\langle \theta \rangle=\mathrm\langle z \rangle = \mu

and the length of the mean resultant is

:
R=|\langle z \rangle| = e^


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wrapped Cauchy distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.